Get a picture of the future

It's here. The future of sensors.

Observing quantum effects usually requires large, cooled and expensive setups. With the microwave-free quantum magnetometer, Quantum Technologies has achieved a real coup in collaboration with duotec. Our magnetic field camera is **small**, **coolingless**, **cost-effective** and nanometers-length more precise than anything previously known.

Precise with high resolution — QT-MI1080 magnetic field camera

It is particularly well suited for:

- High-resolution measurements of magnetic field distribution [Full HD resolution]
- Non-destructive material testing by measuring the magnetization of components
- Magnetic field camera for measuring dynamic magnetization processes [140 fps]
- Inline monitoring of metallic and magnetic parts

QT-MI1080 — Megapixel magnetic imaging with Nanodiamonds

- The thin layer of nanodiamonds allows direct optical measurement of the magnetization
- Direct measurement of magnetic flux density with full HD resolution [1920 x 1080 Pixel]
- Filming of magnetization processes with up to 140 Hz
- Small design for integration into existing systems or for manual operation
- Galvanically isolated, non-magnetic and non-conductive sensor layer

Application — Non-destructive material testing

18 mm

- Direct measurement of the entire magnetic field distribution in one plane allows lightning-fast testing of magnetizable components
- Due to the extremely high pixel count, even the smallest faults can be detected
- Our metallic figure got a stab through the heart (Ø 0.8 mm) – clearly visible in the magnetic field distribution

Technical data

- Magnetic measuring range: |B| = 0 50 mT
- Isotropic measurement of |B|
- Sensor area: 32 × 22 mm²
- Number of pixels: 1920 × 1080 [Full HD]
- Effective pixel size: 20 µm
- Update frequency: up to 140 Hz
- Minimum sensor distance: < 1 mm

